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Flow-alignment and viscosity rules for single-phase binary 
mesomorphic mixtures 

by ALEJANDRO D. REY 
Department of Chemical Engineering, McGill University, Montreal, Quebec 

H3A 2A7, Canada 

(Received 26 June 1995; injinal form 29 August 1995; accepted 12 September IYY5) 

A macroscopic model for incompressible homogeneous (single phase) binary nematic mixtures, 
under isothermal conditions is given. The rheological model is a generalization of the standard 
Ericksen's nematorheological model for single component uniaxial rod-like nematic liquid 
crystals. Its special cases include single component orthorhombic biaxial nematics and single 
component uniaxial nematics. The theory is used to formulate rules for the rotational viscosity 
and the reactive parameter of nematic mixtures in the presence of weak flows. The predicted 
mixture rules for the reactive parameter and rotational viscosity are analysed as a function 
of concentration and rotational viscosity ratio for various monomeric and polymeric mixtures, 
and for rod-rod, disc-disc, and rod-disc nematic mixtures. The mixture rules are used to 
compute alignment phase diagrams and alignment transition (orientational instability) 
thresholds. 

1. Introduction 
Improving product and processing properties through 

alloying and mixing is a commonly used route in indus- 
trial manufacturing [ 11. Low molecular weight nematics 
used in display devices are routinely mixed to reducc 
the melting temperature, and many commercial nematic 
mixtures have the low-melting solid-nematic eutectic 
composition. Nematic polymers are also mixed and 
blended with the objective of reducing costs through 
viscosity reduction [ 21. These examples highlight the 
practical need to develop a fundamental understanding 
of the rheology and thermodynamics of liquid crystalline 
mixtures, and the formulation of mixture rules. Accurate 
mixture rules for nematic fluids will be required to design 
fluids with specific rheological and flow-alignment 
behaviour. 

A fundamental rheological property of a nematic 
liquid crystal is its ability to orient close to the flow 
direction and in the shear plane when subjected to a 
shear flow. Nematics that display this property are 
known as flow-aligning nematics [ 31. The flow-aligning 
angle for low molar mass uniaxial nematics is known as 
the Leslie angle and typically is less than 10". Nematics 
that lack the ability to orient close to the shear flow 
direction are commonly known as non-aligning nemat- 
ics. The parameter that describes shear flow-alignment 
is known as the reactive parameter 1 = - yz/yl, where 
y1 is the rotational torque coefficient and yz the irrot- 
ational torque coefficient. Frequently, alignment (ori- 
entation) transitions involving the loss or appearance of 

alignment are observed. Loss of alignment gives rise to 
complex orientation transient and stationary patterns 
[4,5]. For single component nematic liquid crystals, 
shear flow-alignment is a rheological property that may 
depend on the magnitude of the shear rate [6], and 
temperature [ 31. For low molar mass nematics, temper- 
ature is a tuning parameter for the loss of alignment 
through the creation at lower temperatures of fluctuating 
cybotactic clusters [ 3,7]. On the other hand, for nematic 
polymers shear rate is an effective tuning parameter for 
the loss of alignment at lower shear rates through the 
production of a broad molecular distribution function 
[6,8]. For miscible mesomorphic nematic mixtures we 
thus expect that concentration, temperature, shear rate, 
and molecular weight differences will be effective tuning 
parameters for alignment transitions in shear flows. 

Previous work on the continuum mechanical theory 
of nematic liquid crystal mixtures [9, lo] was mainly 
directed to a formulation of balance laws, without con- 
sideration on proper types of constitutive equations for 
these structured mixtures. A more recent work on nem- 
atic mixtures [ 111 presents a macroscopic theory for 
biaxial binary mixtures of two uniaxial nematic liquid 
crystals and characterizes its shear flow-alignment and 
its response to magnetic fields. An important finding of 
this theoretical work is that due to dynamic interactions, 
the shear alignment angles of the directors of the biaxial 
mixture are a function of the shear rate, in contrast to 
truly single component biaxial nematics; as is well known 
director theories for liquid crystal flows predict a shear 
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148 A. D. Rey 

rate-independent alignment angles [I 3,12,13]. More 
recently a macroscopic theory for single-phase rod-like 
nematic mixtures has been given [14]; this work did 
not include concentration effects. In this work it was 
found that mixtures of two aligning nematics result in 
most cases in flow-aligning biaxial nematic mixtures, 
and that mixtures of an aligning nematic with a non- 
aligning nematic results in a flow-aligning biaxial 
nematic mixture, only if sufficient strong dynamic inter- 
actions are present. In all cases the predicted degree and 
type of alignment behaviour is shear rate-dependent. 

The effect of concentration and temperature on the 
flow-alignment of low molar mass nematic mixtures has 
not been experimentally characterized. On the other 
hand, available rotational viscosity (yl) measurements 
on miscible nematic mixtures seem to indicate that 
interaction effects produce deviations from the typical 
linear mixing rules [ lS ] .  For example, the rotational 
viscosity of mixtures of polar azoxy compounds shows 
a local minimum at an intermediate mole fraction con- 
centration [ 151. Thus we would expect a similarly non- 
ideal mixture behaviour for the irrotational torque 
coefficient y 2 ,  and the reactive parameter A. 

Mixtures of polymeric and low molar mass nematics 
should give rise to alignment behaviour that is affected 
by both shear rate and temperature. Dilute homogen- 
eous binary mixtures of aligning low-molar mass nemat- 
ics with side chain nematic polymers, and non-aligning 
low-molar mass nematics with main chain nematic poly- 
mers have been extensively studied [ 161. These experi- 
ments provide conclusive evidence that the rheology of 
nematic mixtures exhibits strong deviations from single 
component behaviour. For example, it was found that a 
dilute solution of a side chain nematic polymer in a 
non-aligning nematic gives rise to a flow-aligning homo- 
geneous nematic mixture, and a dilute solution of a 
main chain nematic polymer in an aligning nematic 
gives rise to a non-aligning homogeneous nematic mix- 
ture. The alignment properties of the two dilute mixtures 
were explained using a model [17] that takes into 
account the modification of the isotropic shape of a 
flexible polymer coil in the presence of the nematic 
solvent; semi-dilute or concentrated solutions were not 
investigated. 

From the above discussion it appears that there is a 
strong need to develop a better understanding of the 
rheology of nematic mixtures in general, and flow- 
alignment mixture rules in particular. With respect to 
the latter, an essential issue is to be able to derive 
mixture rules from knowledge of the components proper- 
ties and their interactions. The objective of the present 
paper is (i) to present a macroscopic rheological equation 
of state for homogeneous binary nematic mixtures, 
(ii) use the theory to derive flow-alignment and rota- 

tional viscosity mixture rules applicable to weak flows, 
and (iii) to use the mixture rules to construct alignment 
phase diagram and to predict alignment transitions. We 
restrict our discussion to a model binary homogeneous 
mixture of two uniaxial nematic liquid crystals, and that 
is composed of two types of mesogenic molecules. We 
treat three types of binary rigid nematic mixtures invol- 
ving the following molecular shapes: (i) rod-rod, 
(ii) disc-disc, and (iii) rod-disc. In this paper we general- 
ize Ericksen’s transversely isotropic theory (TTF) [ 181 
for single component nematic liquids to a binary mixture. 
As common to all director theories, here we neglect any 
possible flow effect on the scalar order parameters [I 31. 
thus restricting the validity of the model predictions to 
materials and processing conditions for which the scalar 
order parameters are not significantly affected by flow. 

The paper is organized as follows. $2  develops the 
governing macroscopic rheological equations for homo- 
geneous binary nematic mixtures, and identifies the main 
parameters that control the alignment properties of the 
mixture. 0 3 presents the mixture rules (for the rotational 
viscosity and the reactive parameter) and alignment 
phase diagrams for uniaxial nematic mixtures composed 
of rod-like or disc-like molecules. 5 4 presents the mixture 
rules (for the rotational viscosity and the reactive para- 
meter) and alignment phase diagrams for biaxial nematic 
mixtures composed of rod-like with disc-like molecules. 
5 5 gives the conclusions. 

2. Macroscopic dynamics of homogeneous binary 
nematic mixtures 

The specification of the average orientation of the 
rigid mesogens in a homogeneous binary nematic mix- 
ture composed of two uniaxial nematic liquid crystals is 
given by two vectors (n,m), known as the directors, 
restricted by 

n - n = l ;  m . m = l  ( 1 a, b) 
where in general m * n # 0. For rod-like (disc-like) nemat- 
ics the director represents the average orientation of the 
molecular unit vectors along the largest (shortest) 
molecular dimension. For binary mixtures of two rod- 
like nematics or two disc-like nematics we shall assume 
stable uniaxiality (n * m = 1) in the absence of flow. For 
binary mixtures of uniaxial rods with uniaxial discs we 
shall assume stable biaxiality (n * m = 0) in the absence 
of flow. 

An approximate expression for the excess free energy 
density F as a function of the two directors (n,m), due 
to spatially homogeneous deformations, is given by [ 111 

(2)  

where the IC is a temperature dependent phenomeno- 

K 
F = - (n - m)z 

2 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
2
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Flow alignment and viscosity rules 149 

logical parameter, whose units are energy/volume. The 
parameter IC is the static coupling coefficient between 
the two directors. The two representative cases are as 
follows. (i) For rod-rod and disc-disc binary mixtures 
K < 0, the stable state in the absence of flow is uniaxial, 
and the two directors are collinear, n = m; in the limit 
K - +  - GO the nematic liquid crystal is always uniaxial, 
but for finite values of K the flow may induce biaxiality, 
and equation (2) gives the stored elastic energy density 
due to flow-induced biaxiality. (ii) For rod-disc binary 
mixtures K > 0, the stable state in the absence of flow is 
biaxial, and the two directors are orthogonal, n - m = 0 
in the limit K + co the nematic liquid crystal is always 
perfectly biaxial, but for finite values of K the flow may 
induce uniaxiality, and equation (2) gives the stored 
elastic energy density due to flow-induced uniaxiality. 

The component concentration in a single-phase binary 
nematic mixture can be defined in terms of mole fractions 
( X )  or volume fractions (@). The correct concentration 
for miscible mixtures will depend on the type of property. 
For mixtures of low molar mass nematics mole fractions 
are typically used [ 151 for properties, such as viscosity 
and Frank moduli, that depend on the number of 
molecular interaction. For single phase polymer mixtures 
volume fractions are the appropriate concentration vari- 
able. Without loss of generality we use throughout 
volume fraction as a concentration unit of each compon- 
ent of the binary mixture, and note that to convert mole 
fractions X into volume fractions @ we can use 

(3)  

where the subscript 1 (2) refer to component 1 (2), w1 
(wz )  is the total mass of component 1 (2), p1 ( p 2 )  is 
the mass density of component 1 (2), and MI ( M 2 )  is 
the molecular weight of component 1 (2). To simplify the 
notation we use throughout Q1 = @ and Qz = 1 - @. 
Below we use the following notation: @( 1 - @) is the 
volume fraction of the nematic component with 
director n(m). 

The product of temperature with the rate of entropy 
production density, A, is given by the following difference 
between dissipative and storing elastic processes: 

aF aF 
dn dm 

A = ts:D - @ -  . N  - (1 - @)- - M  (4) 

where tS is the symmetric traceless extra stress tensor. 
The fluxes are the rate of symmetric viscous extra stress 
tensor ts, and the products of the mole fractions times 
the Jaumann derivatives [ 181 of the directors N and M, 

given by 

( 5  a, b, c) 

where v is the velocity vector, W is the antisymmetric 
vorticity tensor, and the superposed dot denotes material 
differentiation. The constraints n * N = 0 and M * M = 0 
arise due to the unit length constraint on the directors 
(n-n  = 1, m . m  = 1). The forces appearing in equa- 
tion (4) are the symmetric traceless rate of deformation 
tensor D, and the two vector molecular fields -aF/an 
and -aF/am, given by 

and 

aF 
an, 

aF 
ami 

_ - -  - - K(n - m)[mi - (n - m)ni]; 

- - K(n a m) [Ini - (n * m)mi] 
(6 b) 

where the unit length restriction on the directors n and 
m has been incorporated. A linear expansion of the 
fluxes {ts,@N,(l -@)M} in terms of the forces 
{ D, - dF/dn, - aF/am) gives 

- D  

_ -  - am 

(7) 

where T denotes transpose, and where the symmetry of 
the coefficient matrix follows from Onsager reciprocal 
relations [19]. The minus signs in the first row of the 
matrix of coefficients arises because D is odd with respect 
to time inversion but both - aF/dn and aF/am are even. 
Assuming that the tensor coefficients are dependent on 
@, n and m, taking into account the tensor order of the 
forces and fluxes, and the possible sign reversals of the 
fluxes with reversals in n and m we obtain 
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150 A. D. Rey 

and 

where the expressions for the coefficients are listed in 
the Appendix. The coefficients appearing in L1' have 
viscosity units, the coefficients appearing in L2*, L33, 
and LZ3 have units of reciprocal viscosity, and those 
appearing in L12 and LI3 are dimensionless parameters, 
commonly known as reactive parameters [ 31. 

As shown in the Appendix the two governing director 
equations are given by 

@N = @A"[D - n - (D : nn)n] 

I Ji 

r i  
+ @ ( l - @ )  A n m ( D : n m ) - ~ ( n . m )  

(9 4 
[ 

[m - (n - m)n] 

( 1 ~ @ )M = ( 1 - @ )I." [ D * m - (D : mm) m] 

ti + @( 1 - @) Am"(D : nm) - ; (n - m) 1 1'1 

[n - (n * m)m] 

where 1" and 1" are dimensionless reactive parameters, 
Anm and A"" are dimensionless reactive parameters 
arising due to dynamic couplings, and yy  and y y  are the 
rotational viscosities for n and m, respectively; these six 
parameters are temperature and concentration depend- 
ent. The ratios yy/I t i I  and y y / I i c I  are the two director 
relaxation times of the model. Expressions for the sym- 
metric and antisymmetric contributions to the viscous 
extra stress tensor are given and discussed in the 
Appendix. Here and in the rest of the paper we restrict 
the analysis to alignment behaviour, and therefore 
consider the two director equations (9 a, b) in detail. 

Equations (9) show that this model predicts that 
the flow-orienting properties will depend on the signs 
and magnitudes of the four reactive parameters 
(,in, im, A"", A""). As is well known [ 31, thermodynamic 
restrictions do not restrict the signs of these four reactive 
parameters, with the consequence that these degrees of 
freedom give rise to a variety of alignment modes and 
transitions. The dynamical coupling terms Anm and A"" 
are analogous to the hydrodynamic interaction terms 
considered in polymer dynamics [18] and, as shown 
below, they may promote or hinder flow-alignment 
during shear. On the other hand the elastic storage 
mechanism, introduced by ti, and arising from mesogenic 
interactions between the two nematics always prom- 
otes uniaxiality (biaxiality) if K < 0 ( K  > 0). Dotting 
equation (9 a) with n yields N 1 n = 0, and dotting ( 9  b) 
with m yields M * m = 0, as required. In addition equa- 

tions (9) show that N(n)= -N(-n) and M(m)= 
-M(-m), as required. 

An important observation regarding equations (9) is 
that the presence of the elastic terms in the director 
equations, provide for a mechanism that introduces 
dependence of the stationary director orientation on the 
rate of deformation. For example, for shear flow-align- 
ment the model predicts that the director angles are a 
function of the shear rate, a feature that is present in 
nematic polymers [20] but it is not captured by the 
Leslie-Ericksen theory [3] for uniaxial nematics or by 
director theories for orthorhombic biaxial nematics 
[ll-131. This mechanism was first identified in [ l l ]  
for binary nematic mixtures that are biaxial at rest. 

An important observation regarding the consistency 
equations (9) is that they properly reduce to the gov- 
erning director equations for spatially uniform ortho- 
rhombic biaxial nematic liquid crystals, as seen by 
imposing the biaxiality constraint n * m = 0 in equations 

N = 1" [ D * n -- (D : nn)n] + ilnm [(D : nm)m] 
(9): 

(10a) 

and 

M=i,"[D-m-(D:rnm)m] +xmn[(D:nm)n] 
( 10 b) 

where 2" = (1 - @)Anm and zmn = ( 1  - @)Amn. 
By setting @ = 1 in equations (9 a, b),  i t  is straightfor- 

ward to show that the director model properly reduces 
to the well-known viscous TIF model [lS] applicable 
to single component low molar mass nematics, and 
containing a single reactive parameter An = A = - js2j;ll. 
In the TIF model shear flow-alignment of rod-like (disc- 
like) nematics exists if I I  > 1 ( 2  < - l), and non-alignment 
if 0<A< 1 (0>1> -1). In the alignment regime of 
rod-like (disc-like) nematics, the director lies in the shear 
plane and is oriented with the positive (modulo k n )  
Leslie angle QL with respect to the flow direction, which 
given by 

whcre positive angles are measured anti-clockwise. 
Below we present the predictions of the theory (equa- 

tions (9)), and restrict the analysis to slow flow regimes, 
which is defined by 

where the double bars denotes the norm and max(lp,) 
denotes the maximum rotational viscosity of the two 
components (y,,y2). I f  equation (12) holds uniaxial 
(biaxial) mixtures at rest remain uniaxial (biaxial) when 
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Flow alignment and viscosity rules 151 

subjected to sufficiently weak flows. Results for the non- 
linear strong flow regime, where effects of the magnitude 
of the shear rate dictates alignment behaviour [ 11,141 
is beyond the scope of this paper. 

3. Uniaxial mixtures in slow flows 
Here we consider the rheology and flow-alignment of 

single-phase uniaxial nematic mixtures consisting of 
binary rod-rod and disc-disc solutions. In the presence 
of slow flows uniaxiality is retained, since the elastic 
restoring mechanism is sufficiently stronger that flow- 
induced biaxiality. Thus we consider the case where n = 

m, and N = M. In this case equations (9) collapse into 
the following single equation: 

y F N  = AFy;"'" [D * n - (D : nn)n] (13) 

where the mixture's rotational viscosity yyx and reactive 
parameter ?-Fin in the slow flow limit are given by 

@Y? + ( 1  - @M ( 14 a) ?';i" = 

and 

( 14 b) 

where R(@) is the ratio of the rotational viscosities of 
the two components, and where the subscript Lo' in 

indicates slow flow regime. 

3.1. Rotational viscosity mixture rule 
The rotational viscosity for the nematic mixture y"'" 

is given in equation (14 a), and it follows a non-linear 
mixture rule, since as shown in the Appendix, the 
rotational viscosities of the components (7: , y?) depend 
on concentration. Using equations (A 15 c, A 17 c) in 
equation ( 14 a) gives the following expression for the 
mixture rotational viscosity: 

To capture trends we introduce the scaled mixture 
rotational viscosity y y  = $'"/yy(@ = 0). Figure 1 
shows the scaled mixture rotational viscosity as a func- 
tion of the volume fraction @; parameters: 
(a:2 + 1$)/$(0) = 1-5, af3 / f l (0 )  = 3, (a:3 + ag3)/y?(0) 
= 1. This type of concentration dependence of the rota- 
tional viscosity is shown in actual binary mixtures of 
polar azoxy rod-like nematics [ 151, 

1 .o 

'5 0.8 

> 
3 0.5 

x 

.- 8 

3 
G Oq3 

0 

x 
v1 

0.0 
0 0.25 0.5 0.75 

Volume Fraction, 

Figure 1. Scaled mixture rotational viscosity y p / y y ( O )  as a 
function of the volume fraction @, according to equation 
(15). Parameters: (a:' + a:2)/y;"(0) = 1.5, a f 3 / f l ( 0 )  = 3, 

+ az3)/y?(O) = 1. This type of concentration depend- 
ence of the rotational viscosity is shown in actual binary 
mixtures of polar azoxy rod-like nematics [15]. 

3.2. Flow-alignment mixture rule 
Specific predictions for rod-rod and disc-disc mix- 

tures are shown in the following sections, but general 
results for uniaxial mixtures are discussed in this section. 
According to equation ( 13) the shear flow-alignment 
properties of a binary uniaxial mixture (i.e. slow flow) 
are given by the mixture reactive parameter AF, shown 
in equation (14 b). An important observation is that for 
the slow flow regime of uniaxial mixtures, dynamic 
interaction parameters play no role. The Leslie alignment 
angle of the mixture Or is now given by 

rods: 0 G OL < 4 4  
discs: n/2 < OL < 344. . 

(16) 

The mixture reactive parameter AFix depends on the 
concentration @, the ratio of component rotational 
viscosities R, and the single component reactive para- 
meters in and Am. When R = 1 the alignment mixture 
rule simplifies to 

Ay = @P+ (1  - @)Am (17) 

which is the simplest mixture rule, and which may only 
be observed with components of approximately equal 
molecular weights. On the other hand, for mono- 
mer-polymer mixtures R -+ 0, and the mixture reactive 
parameter is approximated by the reactive parameter of 
the polymer: 

Ay = p. (18) 

In this case if the polymer is non-aligning (aligning) at 
slow flows the mixture is non-aligning (aligning). 
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152 A. D. Rey 

3.3.  Flow-alignment rules for uniaxial mixtures of 
rod-like nematics 

In this section n and m represent the directors of the 
two rod-like nematic components of the uniaxial nematic 
mixture. For rod-like nematics the component reactive 
parameters are positive: 3," > 0 and Irn > 0. According to 
equation (14 b) the mixture reactive parameter A? is a 
function of R, @, An, and Am. 

Figure 2 shows the mixture reactive parameter A? as 
a function of the volume fraction @ for two aligning 
components (top of figure 2 ) ,  a mixture of aligning-non- 
aligning components (middle of figure 2) ,  and a mixture 
of two non-aligning components (bottom of figure 2); 
for R : 100 (full line), 1 (dashed-dot line), and 0.1 (dashed- 
triple dot line). The figure show that alignment trans- 

. -... 
- - ~ - - - :'. 

E t 

d 

5 

1.5 
$ 
1 1.0 

p 0.5 

IL 
a, 

& t 
A"= 0.5; Am= 0.9 I 

-.__ 
I... 

1 
0.0 1- 

0 0.25 0.5 0.75 
volume Fraction, 0 

Figure 2. Uniaxial rod-rod mixtures. Mixture reactive para- 
meter as a function of the volume fraction @ for two 
rod-like aligning (top figure), a mixture of aligning-non- 
aligning rod-like components (middle figure), and a mix- 
ture of two non-aligning rod-like components (bottom 
figure); and R: 100 (full line), 1 (dashed-dot line), and 0.1 
(dashed-triple dot line). Alignment transitions are only 
predicted for mixtures of aligning-non-aligning 
components (middle figure). 

itions (@A? = + 1) are only predicted for mixtures of 
aligning-non-aligning (middle figure) components. The 
other two cases, mixtures of two aligning components 
(top figure), and mixtures of two non-aligning compon- 
ents (bottom figure) show no crossover. The figure also 
shows the effect of R =  y y / f l  on Ap; large (small) R 
results in A? w An (Ib? w Am) for @ > o (1 - @ > 0) .  

The alignment transition (@,IF = + 1) predicted for 
mixtures of aligning and non-aligning rod-like nematic 
components (middle plot of figure 2) occurs at 

y;  (1 -@)(1 -Arn)  
yy @(A"- 1) 

R = - = -  ; I " > l ;  O < I " < l .  (19) 

Figure 3 shows the viscosity ratio R = y ; / y y  as a function 
of the volume fraction @ for I" = 1-1 and I" : 0 9  (full 
line), 0.5 (dashed-dot line), and 0.01 (dashed-triple dot 
line). The lines in the figure indicate the alignment 
transition for a given (R,@). For a given R, smaller 
(larger) 3," results in transitions at higher (lower) @. For 
a given @, smaller (larger) Am results in transitions at 
higher (lower) R. For a given set of reactive parameters 
the region above (below) each line corresponds to align- 
ment (non-alignment). 

3.4. Flow-alignment rules for uniaxial mixtures of 
disc-like nematics 

In this section n and m represent the directors of the 
two disc-like nematic components of the uniaxial 
nematic mixture. For disc-like nematics the component 
reactive parameters are negative: 3," < 0 and Am < 0. 
According to equation (27) the mixture reactive para- 
meter is a function of R, @, I", and Am. To simplify 
the analysis in this section we neglect the concentration 
dependence in R. 

Figure 4 shows the mixture reactive parameter A? as 

B 100.. , *- ! !, Rod-Rod 

Volume Fraction, @ 

Figure 3. Uniaxial rod-rod mixtures. Rotational viscosity 
ratio R = e / y f  as a function of the volume fraction @ for 
A"= 1.1  and im: 0 9  (full line), 0.5 (dashed-dot line), and 
0.01 (dashed-triple dot line), for mixtures of two rod-like 
nematics. The lines in the figure indicate the alignment 
transition (A? = 1) for a given (R, a). The volume fraction 
@ corresponds to the component with director n. 
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Figure 4. Uniaxial disc-disc mixtures. Mixture reactive para- 
meter AT as a function of the volume fraction @ for two 
aligning disc-like components (top figure), a mixture of 
aligning-non-aligning disc-like components (middle 
figure), and a mixture of two non-aligning disc-like com- 
ponents (bottom figure); and R: 100 (full line), 1 (dashed- 
dot line), and 0.1 (dashed-triple dot line). Alignment 
transitions for mixtures of aligning-non-aligning (middle 
figure) disc-like components. 

a function of the volume fraction @ for two aligning 
components (top), a mixture of aligning-non-aligning 
components (middle), and a mixture of two non- 
aligning components (bottom); for R: 100 (full line), 1 
(dashed-dot line), and 0.1 (dashed-triple dot line). The 
figure shows that alignment transitions (@ ATm = - 1) 
are only predicted for mixtures of aligning-non-aligning 
(middle figure) components. The other two cases (top 
and bottom figures) show no crossover. The figure also 
shows the effect of R=y; /yY  on A?; large (small) R 
results in ip NN A" (AT NN 1") for @ > 0 (1 - @ > 0) .  

The alignment transition (@ AFix = - 1) observed in 
mixtures of aligning and non-aligning discotic nematic 
components (middle plot of figure 4) occurs at 

y; ( l - @ ) ( - l - A " )  
R = - =  ; A"< -1; - 1  <3,"<0. YY @(l +An)- 

( 20) 
Figure 5 shows the viscosity ratio R = y?/y;" as a function 
of the volume fraction @ for A" = - 1.1 and A" = -0.9 
(full line), -0.5 (dashed-dot line), and -001 (dashed- 
triple dot line). The lines in the figure indicate the 
alignment transition for a given ( R , @ ) .  For a given R, 
larger (smaller) Am results in transitions at higher (lower) 
@. For a given @, larger (smaller) Am results in transitions 
at higher (lower) R. For a given set of reactive parameters 
the region above (below) each line corresponds to 
alignment (non-alignment). 

4. Biaxial mixtures in slow flows 
Here we consider the rheology and flow-alignment of 

single-phase biaxial nematic mixtures consisting of 
binary rod-disc solutions. In the presence of slow flows 
biaxiality is retained, since the elastic restoring mechan- 
ism is sufficiently stronger than flow-induced biaxiality. 
Thus we consider the case where n * m = 0, where n(m) 
refers to the rod-like (disc-like) component. In this case 
equations (9) simplify to 

@y;N = @y;A"[D - n - (D : nn)n] 

+ @( 1 - @)y;A""(D : nm)m (21 a) 

and 

(1 - @)yFM = (1  - @)yTAm[D * m - (D : mm)m] 

+ @( 1 - @)yYA"(D : nm)n. (21 b) 

To make further progress we now consider 
flow-alignment in rectilinear shear flow. 

Assuming a known incompressible rectilinear simple 
shear flow, with velocity components in rectangular 
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154 A. D. Rey 

coordinates given by v = ( u x ,  vg, v,) = (jjy, O,O), the non- 
zero components of the rate of deformation tensor D 
and vorticity tensor W are 

L) = D  =.;:2; w =-w yx = 212 (22a,b) 
XJ y.x J / XY 

where ?; is the shear rate (9 2 0), x is the flow direction, 
the x-y plane is the shear plane, and z is along the 
vorticity direction. The two director fields are parame- 
trized as follows: 

n = ( n x .  n, .  n , )  = (cos Q,, sin O1. 0) 

m = (m,, mb, m,) = (cos Q,, sin Q,, 0) 
(23 a, b) 

where positive angles are measured anti-clockwise. 
Replacing (22) and (23)  into the governing equations 
(9)  we obtain, after scaling, the following dimensionless 
governing equations for 0, and 0,: 

H ,  = ~ P [  1 - I" cos 20,] 

- [PA"" sin (d ,  + 0,) ~~ cos (6, - 0, j] 

x [cos 0, - cos (0, - Q,) cos O,]/sin O1 (24 a) 

H,= -P[l-~."cos2Q,] 

- [PAmn sin (0, + 0, ) ~~ R cos (6, ~ el)] 
x [cos 0, + cos (Q, - 0,) cos Q,]/sin Q2 (24 b) 

where the dimensionless parameter is given by 

and where the time is now scaled with I l c l h : .  The 
director angle of the rods (0,) and of the discs (0,) are 
restricted by the biaxiality condition: Qz = 0, + n/2. A 
steady state biaxial solution to equations (16) is given 
by 

R @ + ( l - @ )  
cos(2H1., ) = 

R@2" - ( 1  - @)i" 
+ @( 1 - @)[RA"" ~ A""] 

= O l , L  + 7q2 (26 a, b)  
ivhere the subscript denotes the Leslie angle. From 
equations (76) it follows that the mixture's rotational 
viscosity ;I;"'" and reactive parameter of the 
rod-like component (n) in the slow flow limit are given 
by 

(27 a) .,mix - 
, I  - @y? + (1 - qt.7 

and 

i"" @R ( I - @ )  

@ ( I  -@) 
@ ( R -  I ) +  1 

A" + 
@(R - 1 )  + 1 @(R - 1)  + 1 ,:,'n'x = 

- [IRA"" - A""]. (27 b) 

Since the rod-disc mixture is biaxial (n * m = 0) it is 
useful to introduce the following reactive parameters: 

lLmix 0 - -An, 'n,mix = - &?mly (28) 

where is A T  denoted as the mixture's reactive parameter. 
The biaxial mixture is of the shear flow-aligning type if 
A? > 1, and of the non-aligning type if 0 < AT1, < 1. For 
aligning mixtures the directors align in the shear plane, 
as follows: 

x/2 < 02,L 6 3 ~ 1 4 ,  d2.L = O13L + 4 2 .  
The mixture's rotational viscosity y;"'" for in-plane 
motion is given by the simple law of mixtures, as for 
uniaxial mixtures (see equation (15)) and similar conclu- 
sions can be drawn for the present case. On the other 
hand the mixture reactive parameter now contains the 
dynamic interaction terms [RAnm - A""], not present 
in uniaxial mixtures (see equation ( 14 b)). The alignment 
mixture rule for biaxial mixtures is thus characterized 
by a non-linear concentration factor introducing each 
reactive parameter, and by a non-linear concentration 
factor introducing an interaction term. The effect of 
molecular weight asymmetry is captured by the magni- 
tude of R=y;/.y';, and two limiting cases arise: 
(i) Mixtures of polymeric rods-monomeric discs: in this 
case R>> 1, and the mixture's reactive parameter 
simplifies to 

= i n  + (1 - @)A"" (30) 

and the alignment properties of the solution are dictated 
by the rod-like component and a concentration depend- 
ent factor containing one interaction parameter. 
(ii) Mixtures of polymeric discs-monomeric rods: in this 
case R << 1, and the mixture's reactive parameter 
simplifies to 

(31 1 
and the alignment properties of the solution are 
dictated by the disc-like component and a concentration 
dependent factor containing one interaction 
parameter. 

2;iX = -1" - @A"" 

4.1. Flowalignment rules for biaxiul mixtuves of 
disc-like and rod-like nematics 

Recall that for rod-like nematics the component react- 
ive parameters is positive A" > 0, and for disc-like nemat- 
ics is negative Am < 0. According to equations (27 b, 28) 
the mixture reactive parameter AT is a function of R, 
@, A", and A", A"" and Am. To simplify the analysis we 
neglect the concentration dependence in R. According 
to the type of dynamic interactions (sign and magnitude 
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Flow alignment and viscosity rules 155 

of A"" and A"") we may have no dynamic interaction, 
positive dynamic interactions, and negative dynamic 
interaction. 

4.1.1. Mixtures with no dynamic interaction 

AFix simplifies to 
In this case A"" = A"" = 0, and the reactive parameter 

2 -  ( I - @ )  A" (32) 
@ R  mix - 

@(R - 1) + 1 

which is identical to the uniaxial case (see equation 

Figure 6 shows the mixture reactive parameter ip as 
a function of the volume fraction @; top figure: two 
aligning components (A" = -1" = 1.1); middle figure: a 

( 14 b)). 

"'"0 0.25 0.5 0.75 1 
Volume Fraction, 0 

Figure 6. Biaxial rod-disc mixtures with no dynamic coup- 
ling. Mixture reactive parameter A? as a function of the 
volume fraction @; top figure: two aligning components 
(1" = -1" = 1.1); middle figure: a mixture of non-aligning 
rods (2" = 0.9) with aligning discs (Am = - 1.1); bottom 
figure: mixture of aligning rods (2"'l.l) with non- 
aligning discs (Am = -0.9); R: 0.1 (full line), 1 (dashed-dot 
line), and 10 (dashed-triple dot line). Alignment transitions 
are predicted for mixtures of aligning-non-aligning 
(middle and bottom figure) components. 

mixture of non-aligning rods (1" = 0 9 )  with aligning 
discs (1" = - 1.1); bottom figure: mixture of aligning 
rods (A" = 1.1) with non-aligning discs (A" = -0.9); R: 
0.1 (full line), 1 (dashed-dot line), and 10 (dashed-triple 
dot line). The figure shows that alignment transitions 
(@Ay = + 1) are predicted for mixtures of alignin- 
g-non-aligning (middle and bottom figure) components. 
The other case (top figure) show no crossover. The figure 
also shows the effect of R = y:/@ on A?; large (small) 
R results in Ap % A" (Af" z -Am) for @ > O  (1 - @ >O).  

The alignment transition (@,IF = + 1) observed in 
mixtures of aligning rods (discs) and non-aligning discs 
(rods) occurs at 

y y  
Y? @( 1 - 17) 

Figure 7 shows the viscosity ratio R = y:/$ at which 
the alignment transition occurs as a function of the 
volume fraction @ for A" = 0 9  and A m =  -1.1. The 
opposite case A" = 1.1 and Am = -0.9 gives the same 
line. The line in the figure indicates the alignment 
transition for a given ( R , @ ) .  Addition of non-aligning 
rods (discs) to aligning discs (rods) eventually leads to 
non-alignment. 

(1 - @)(- 1 -Arn)  
R = - =  (33) 

4.1.2. Mixtures with positive dynamic interaction 
In this case A" > 0, A"" < 0. To simplify the analysis 

we assume Am = A" > 0, A"" = Am < 0. The mixture's 
reactive parameter 1f" simplifies to 

@R + @(l - @)R 
@ ( R -  1)+ 1 

( 1  - @) + @(1- @) 
@(R - 1) + 1 

1 A" - A". 

(34) 

Volume Fraction, 0 

Figure 7. Biaxial rod-disc mixtures with no dynamic coup- 
ling. Viscosity ratio R = y4lpy as a function of the volume 
fraction @ for in = 0.9 and Am: - 1.1. The opposite case 
R = 1.1 and 1": -0.9 gives the same line. The line in the 
figure indicates the alignment transition (1y = 1 t z -  = 1, 

=, - 1) for a given (R, @). Addition of non-aligning 
rods (discs) to aligning discs (rods) eventually leads to 
non-alignment. 
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156 A. D. Rey 

Figure 8 shows the mixture reactive parameter Ar as 
a function of the volume fraction @; top figure: two 
aligning components (I." = -A" = 1.1); middle figure: a 
mixture of non-aligning rods (A" = 0.9) with aligning 
discs (A"= -1.1); bottom figure: mixture of aligning 
rods (2" = 1.1) with non-aligning discs (A" = -0.9); R :  
0.1 (full line), 1 (dashed-dot line), and 10 (dashed-triple 
dot line). The figure show alignment transitions, that is 
2yx crosscs the value of 1 are predicted for mixtures of 
aligning-non-aligning (middle and bottom figure) com- 
ponents. The other case (top figure) show no crossover. 
The figure shows that positive interactions promote 
alignment. The degree of asymmetry of the profiles 
increases when R deviates from unity. 

Rod-Disc f + interaction 2.01 

I Rod-Disc (+ intcrafti< 

1 I I 

0.25 0.5 0.75 
Volume Fraction, Q, 

0.0; 

Figure X. Biaxial rod-disc mixtures with positive dynamic 
couplings. Mixture reactive parameter iy as a function 
of the volume fraction @; top figure: two aligning compon- 
ents (A" = -Am = 1.1); middle figure: a mixture of non- 
aligning rods (A" = 0.9) with aligning discs (A" = - 1 . 1  ); 
bottom figure: mixture of aligning rods (A" = 1.1) with 
non-aligning discs (A"' = -0.9); R: 0.1 (full line), 1 (dashed- 
dot line), and 10 (dashed-triple dot line). Alignment trans- 
itions are predicted for mixtures of aligning-non-aligning 
(middle and bottom figure) components. The other case 
(top figure) show no crossover. The figure shows that 
positive interactions promote alignment. 

The alignment transition observed in mixtures of 
aligning rods (discs) and non-aligning discs (rods) occurs 
at 

Figure 9 shows the viscosity ratio R = I f ~ ~ f  as a function 
of the volume fraction @ for A'' = 0.9 and I," = - 1.1 (full 
line) and I" = 1.1 and Lrn = -0.9 (dashed-dot line). The 
lines in the figure indicates the alignment transition for 
a given (R, @). Addition of non-aligning rods to aligning 
discs (full line) eventually leads to non-alignment, and 
the rod concentration at the alignment transition 
decreases with increasing R.  Addition of non-aligning 
discs to aligning rods (dashed line) eventually leads to 
non-alignment. and the disc concentration at the aligii- 
ment transition increases with increasing R. Comparing 
figures 9 and 7 it follows that positive interactions 
promote alignment and mixtures require a higher con- 
centration of the non-alignment component to reach the 
alignment transition. 

4.1 3. Mixtures with negatiw dynamic interaction 
In this case An" < 0, A"" > 0. To simplify the analysis 

we assume A"" = -2'' < 0, k"" = -i" > 0. The 
mixture's reactive parameter ibyx simplifies to 

CD2 in R 
@ ( R - l ) + l  @ ( R - 1 ) + 1 '  

(1 - @ ) 2 P  
;"Fix = (36) 

Figure 10 shows the mixture reactive parameter iy 
as a function of the volume fraction @; top figure: two 

- 

10 
Rod-Disc ( +  interaction) 

Volume Fraction, 0 

Figure 9. Biaxial rod-disc mixtures with positive dynamic 
couplings. Viscosity ratio R = y y / y y  as a function of the 
volume fraction @ for A" = 0.9 and A": ~ 1.1 (full line) and 
in = 1.1 and A": -0.9 (dashed-dot line). The lines in the 
figure indicates the alignment transition for a given ( R ,  @). 
Addition of non-aligning rods to aligning discs (full line) 
eventually leads to non-alignment, and the rod concentra- 
tion at the alignment transition decreascs with increasing 
R .  Addition of non-aligning discs to aligning rods (dashed 
line) eventually leads to non-alignment, and the disc 
concentration at  the alignment transition increases with 
increasing R. Positive interactions promote alignment. 
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I I I 

Rod-Disc (- intmtions) 

R d - h  ( -  intastions) 

I I I 

0 0.25 0.5 0.75 
0.0 ' 

Volume Fraction. 0 

Figure 10. Biaxial rod-disc mixtures with negative dynamic 
couplings. Mixture reactive parameter as a function 
of the volume fraction @; top figure: two aligning compon- 
ents (1" = -A" = 1.1); middle figure: a mixture of non- 
aligning rods (2' = 0.9) with aligning discs (Am = - 1.1); 
bottom figure: mixture of aligning rods (1" = 1.1) with 
non-aligning discs (Am = -0.9); R: 0.1 (full line), 1 (dashed- 
dot line), and 10 (dashed-triple dot line). Alignment trans- 
itions are predicted for all mixtures. Negative interactions 
promote non-alignment. 

aligning components (2' = -im = 1.1); middle figure: a 
mixture of non-aligning rods (in = 0.9) with aligning 
discs (A"' = - 1.1); bottom figure: mixture of aligning 
rods (An = 1.1 j with non-aligning discs (Am = -0.9); R: 
0.1 (full line), 1 (dashed-dot line), and 10 (dashed-triple 
dot line). The figure shows that alignment transitions 
(@I-? = + 1) are predicted for all mixtures. The figure 
shows that negative interactions promote non-alignment. 
The degree of asymmetry of the profiles increases when 
R deviates from unity. 

The alignment transition observed in mixtures of 
aligning rods (discs) and non-aligning discs (rods) occurs 
at 

y; 
YT @( 1 - @A") 

( 1 - @ ) [ - ( 1 - @)I," - 1 ] 
R = - =  . (37)  

Figure 11. Biaxial rod-disc mixtures with negative dynamic 
couplings. Viscosity ratio R = y:/$ as a function of the 
volume fraction @ for 3." = 0.9 and 2": - 1.1 (full line) and 
2." = 1.1 and 3.": -0.9 (dashed-dot line). The lines in the 
figure indicates the alignmcnt transition for a given (R, @). 
Addition of small amounts of non-aligning rods to aligning 
discs (full line) leads to non-alignment, and the rod 
concentration at the alignment transition decreases with 
increasing R. Addition of small amounts of non-aligning 
discs to aligning rods (dashed line) leads to non-alignment, 
and the disc concentration at the alignment transition 
increases with increasing R. Negative interactions promote 
non-alignment. 

Figure 11 shows the viscosity ratio R = y;/yI;  as a func- 
tion of the volume fraction SP for I*" = 0.9 and A"' = - 1.1 
(full line) and A" = 1.1 and 1" = -0.9 (dashed-dot line). 
The lines in the figure indicates the alignment transition 
for a given (R,@). Addition of small amounts of non- 
aligning rods to aligning discs (full line) leads to non- 
alignment, and the rod concentration at the alignment 
transition decreases with increasing R. Addition of small 
amounts of non-aligning discs to aligning rods (dashed 
line) leads to non-alignment, and the disc concentration 
at the alignment transition increases with increasing R. 
Comparing figures 9 and 11 it follows that negative 
interactions promote non-alignment and mixtures 
require a lower concentration of the non-alignment 
component to result in the mixture's non-alignment 
orientation mode. 

5. Conclusions 
A macroscopic continuum mechanical model for 

incompressible homogeneous binary nematic mixtures, 
under isothermal conditions has been presented. The 
model is an extension of Ericksen's transversely isotropic 
theory [ lS ] .  Special cases of the model are single 
component orthorhombic biaxial nematics and single 
component uniaxial nematics. The nematic mixture 
model accounts for the elasticity of the mixture that is 
assumed to be uniaxial or biaxial in the absence of flow. 
The theory is used to formulate mixture rules for the 
rotational viscosity and the reactive parameter. The 
mixture reactive parameter that governs the flow-align- 
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158 A. D. Rey 

ment behaviour is a function of the concentration. the 
components rotational viscosity ratio, and the compon- 
ents reactive parameter. Uniaxial mixture rules are inde- 
pendent of dynamic interaction, but biaxial mixture rules 
are dependent on dynamic couplings. Uniaxial and 
biaxial mixtures of aligning and non-aligning nematics 
undergo alignment transitions at concentrations that 
depend on the components molecular weight ratio. 
Biaxial mixtures of two aligning nematics with negative 
dynamic interactions are non-aligning at an intermediate 
concentration range. The alignment properties of poly- 
mer-monomer nematic mixtures are dictated by the 
alignment properties of the polymer component. 

This work is supported by a grant from the Natural 
Science and Engineering Research Council of Canada. 
The author wishes to thank the McGill Computer Center 
for a grant to defray the computational costs of this 
research. 

Appendix 
A 1. Tensorial coeficients 

The coefficients appearing in the expansions of tS, @N 
and ( 1 - @)M, appearing in equations (8 a-c) are given 
by 

A 2. Constitutive equutionfor the extra stress tensor (t) 
In liquid crystals theories the extra stress tensor t is 

the sum of a symmetric contribution tS and the antisym- 
metric contribution ta. To simplify the notation we define 
the two molecular fields h and H as 

(7F 
an 

dF 
hn 

h - - - = -  ti( n * m) [m - (n - m) n] ; 
(A 7 a, h )  

H E - - = -  Ic(n-m)[n-(n-m)n]. 

Using equations (A 1; A2, A 3  and 80)  we find the 
symmetric contribution to the extra stress tensor t": 

t S = x i l D  + @ a : l ( D * n n + n n . D ) + @ a ~ l n n ( n n : D )  

+ ( 1  - @)x:'(D-mm+mm.D) 

+ ( 1 - @)at1 mm(mm : D) 

+ @( 1 - @)x;'(nn( D : mm) + mm( D : nn) 

+ 2nm( D : nm) + 2mn( D : nm)) 

- @ 

x (mm(n h) + nm(m * h)  + mnjm - h)) 

- (1  - @)-(mH + Hm) - @( 1 - @,hi3 

El2  

2 
(nh + hn) - @( 1 -. @ ) x i 2  

x i 3  

2 

x (nn(m. H )  + mn(n* H )  + nm(n- H))  (A 8)  

where terms proportional to 6 are omitted, since they 
can be absorbed into a pressure term. To find the 
antisymmetric ta contribution to the total extra stress 
tensor t, we write equation (3)  in a slightly different 
form: 

A = t s :D  i ta : W + h * @h + H * (  1 - @,)m ( A 9 )  
From the equivalence between ( 3 )  and ( A  9 )  we find 

ta :  W = - h *  @ W - n  ~. H - (  1 - @)W am. (A 10) 

Rearranging the right hand side we get 

ta:  W = (@hn + (1 - @)Hm): W (A111 

and splitting the tensor within the parenthesis into 
symmetric and antisymmetric contributions we get 

ta :W = {[ i@(hn+nh)+:( l  -@)(Hm+mH)]) :W 

+ ( i@(hn - nh) + +( 1 - @)(Hm - mH)] : W. 

(A 12) 
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Flow alignment and viscosity rules 159 

Noticing that the first bracket gives no contribution 
(since it is symmetric while W is antisymmetric) we 
finally get 

ta = a@(hn - nh) + +( 1 - @)(Hm - mH). (A 13) 

Using equations (A 7 a, b and A 13) we find that for @ = 
1/2 this model gives t a = O .  It should be noted that 
models with a symmetric stress tensor can also be easily 
formulated. 

A 3. Derivation of the direcror equations 
Using equations (A 2, A 4, A 6 and A 7 j and n - N = 0, 

the expansion ( 8  b) for the corotational derivative @N 
yields to second order in n m: 

@ N = @ ~ : ~ [ D - n - ( D : o n ) n ]  

+ @(l - @)[2c(:’(D:nrn) 

- ~(ct:’ + a:’ + @( 1 - @ jc4’)(n - m)] 

x [m - (n - m)n]. (A 
Using the following relabelling in equation (A 14): 

a:’ = P, 24’ = A=, a:’ + ctz2 + @( 1 - @)a:3 = I, 

(A 15 a, b, c) 

we get the governing equation ( 9 a )  for the director n. 
The coefficient y; is the rotational viscosity for in the 
mixture and is a function of @( 1 - @). 

Using equations (A 3, A 5, A 6 and A 7) and m M = 
0, the expansion (8  c) for (1 - @)M yields to second 
order in n - m: 

(1 - @)M = (1 - @)u:~[D am - (D:mm)m] 

+@(1-@~)[2a:~(D:nm) 

- ~ ( 4 ~  + 
x (n - (n - m)m]. 

+ @( 1 - @)a:3 j(n - m)] 

(A 16) 

Using the following relabelling in (A 16): 

4 3  P, 2 4 3  = n m n ,  4 3  + 4 3  + @( 1 - @ j.43 = 
(A 17 a, b, c) 

we get the governing equation (9b) for the director m. 
The coefficient yy is the rotational viscosity for m in the 
mixture and is a function of @( 1 - @). 
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